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Abstract

The numerical difficulties of the acoustic optimization subject to an acoustic constraint, when structural
boundary conditions are imposed on the velocity profiles with the finite element solution, have been
discussed in this paper. A structural constraint is proposed for the acoustic optimization. This constraint
leads to a radiation efficiency index, which is the ratio of the acoustic energy radiated by the structure to its
potential energy. The structural constraint allows for the boundary conditions to be satisfied prior to the
optimization, leading to velocity profiles physically feasible to elastic structures.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Present strategies for optimizing acoustic power radiated from a structure can be separated into
two groups. The first group entails a conventional approach: the response of a structure for a
given set of design parameters is obtained and the acoustic power radiated from the structure is
calculated. Optimization methods are then used to search the parameter space in order to achieve
minimum radiated acoustic power. The second group decouples the acoustic and structural
domains: the surface velocity profiles of the structure that result in minimum acoustic radiation,
called ‘‘weak radiators’’, are found first via an acoustic optimization problem. Then, structural
design parameters are optimized to meet the desired velocity profiles. This approach is more
suited to the exterior acoustic field than the first approach [1].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Cunefare, Naghshineh and Koopmann have completed extensive studies with this decoupling
technique [2–4]. In order to determine the weak radiators for baffled, undamped or lightly
damped structures subject to harmonic excitation at a certain frequency, radiation modes must
first be extracted. This can be accomplished by means of an acoustic optimization subject to
certain constraints. Subsequently, those radiation modes are grouped to satisfy the prescribed
structural boundary conditions, which can be a difficult task. In the acoustic optimization, the
constraint is needed to avoid the trivial solution. Cunefare considered structural constraints [5].
However, these constraints did not impose structural boundary conditions. When an acoustic
constraint is used, such as the radiated power of a piston with the same mean square velocity as
that of the flexible structure, the acoustic optimization problem causes numerical difficulties with
the finite element method, as will be demonstrated herein.

This paper proposes a structural constraint to the acoustic optimization problem, leading to a
definition of radiation efficiency based on the structural energy. With the structural constraint,
boundary conditions of the structure can be satisfied prior to the acoustic optimization, and the
numerical difficulties associated with the finite element solution are eliminated. Furthermore,
grouping the weak radiation modes to satisfy structural boundary conditions becomes a trivial
task.

The outline of the paper is as follows. In Section 2, we review the classical formulation of
radiation efficiency in terms of the Rayleigh integral and the acoustic optimization problem for
finding weak adiators. Section 3 discusses the normalization schemes as constraints to the acoustic
optimization problem. We point out the numerical difficulties with finite element solutions when
structural boundary conditions are imposed to the acoustic optimization problem subject to an
acoustic constraint. A structural constraint is then proposed. Section 4 presents numerical
examples with different boundary conditions. Section 5 concludes the paper.
2. Formulation

Consider a baffled beam of width b and length L vibrating in air with frequency o: The acoustic
pressure pðrS0 Þ at any observation point rS0 on the beam surface S due to the beam normal surface
velocity vðrSÞ can be written using the Rayleigh integral as

pðrS0 Þ ¼
iorf

2p

Z
S

vðrSÞ
e�ikR

R
dS; (1)

where rf is the air density, k is the acoustic wavenumber, rS is the position of the surface element
dS with normal velocity vðrSÞ; rS0 is the position of the surface receiver point, and R ¼ jrS � rS0 j:
The acoustic power W radiated from the baffled beam is given by

W ¼
1

2

Z
S0

Z
S

vðrSÞ
orf

2p
sinðkRÞ

R

� �
v� ðrS0 ÞdS dS0

¼
orf b2

4p

Z L

0

Z L

0

sin kRðx; rÞ

Rðx; rÞ
vðxÞv�ðrÞdxdr; ð2Þ
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where the asterisk indicates complex conjugate. Note that, for the beam, we have dS ¼ b � dx and
dS0 ¼ b � dr:

The radiation efficiency s of the beam is defined as

s ¼
W

1
2
rf cShv̄2i

; (3)

where c is the speed of sound in the air, S is the beam surface area and hv̄2i is the spatial average of
the normal surface velocity of the beam. s is the ratio of the radiated power to that from a baffled
piston with the same area and the normal velocity

ffiffiffiffiffiffiffiffi
hv̄2i

p
:

2.1. Optimization of radiated acoustic power

Let the spatial distribution of the velocity be expressed as

vðxÞ ¼ aTxðxÞ; (4)

where a represents an N � 1 vector of real modal coefficients and x represents an N � 1 vector of
expansion functions. Then, the radiated acoustic power can be written in a quadratic form as
W ¼ 1

2
aTBa; where the matrix B computed from the integration can be shown to be Hermitian.

Consider the problem of minimizing W with respect to a subject to a constraint 1
2
aTEa ¼ 1: The

Hermitian matrix E is determined from a physical constraint. By using the method of Lagrange
multipliers, we have

L ¼ 1
2
aTBa� l 1

2
aTEa� 1

� �
(5)

and the necessary conditions for optimality

qL

qa
¼ 0;

qL

ql
¼ 0: (6)

This leads to an eigenvalue problem,

Ba ¼ lEa: (7)

Since both matrices in Eq. (7) are Hermitian, the eigenvalues must be all real so that we can
order them as l14l24 � � �4lN : The corresponding eigenvectors ai are also real. The radiation
efficiency of the velocity profile viðxÞ ¼ aTi xðxÞ is determined by li:
3. Normalization schemes

3.1. Acoustic constraint

Pre-multiplying Eq. (7) by 1
2
aT; we have

l ¼

1
2
aTBa

1
2 a

TEa
¼

W
1
2 a

TEa
: (8)
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Clearly, the constraint 1
2
aTEa behaves like a normalization term in the above equation. When we

choose the constraint to be the acoustic power radiated by the fore-mentioned piston such that
1
2
aTEa ¼ 1

2
rf cShv̄2i; we have s ¼ l: In this case, the eigenvalues li are the classical radiation

efficiency defined in Eq. (3) for the corresponding velocity profile.
3.2. A remark

Note that the velocity profiles determined in this eigenvalue problem do not necessarily satisfy
any structural boundary conditions. Hence, it can be difficult to apply the results obtained here to
structural designs for minimal sound radiation. Furthermore, we point out that when the
boundary conditions are imposed in the acoustic optimization problem, poor numerical behavior
associated with the finite element solution occurs.

For the purpose of illustration, we consider the beam and the acoustic radiation problem
studied in Ref. [3]. Two methods are applied to this problem: the finite element method and the
modal expansion approach with comparison functions of the beam. The modal expansion
approach provides an accurate solution as a basis to check the finite element solutions. Both
methods considered in this paper can produce the same solutions as reported in Ref. [3] under the
same conditions.

In the acoustic optimization, cantilever boundary conditions of the beam are imposed. Fig. 1
compares the third radiation mode, as an example, obtained with the finite element method using
five, 20, and 80 C1- and C2-elements with that obtained by the modal expansion approach. The
shape functions of the C1- and C2-elements are listed in Appendix A.

The fluctuations in the radiation mode by the finite element method are concentrated in the first
two elements close to the clamped boundary. As the number of elements increases, and the order
of the element shape functions increases from C1 to C2; the fluctuations become sharper and
closer to the edge of the beam. Such a phenomenon is clearly due to the poor numerical behavior
of the formulation of the acoustic optimization problem since the solution obtained by the modal
expansion approach is rather smooth.
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Fig. 1. Radiation mode 3 with clamped–free boundary conditions: -�-, five C1 elements; -o-, 20 C1 elements; -+-, 80 C1

elements; -&-, five C2 elements; -�-, 20 C2 elements; -�-, 80 C2 elements. Solid line: solution by modal expansion.
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Because the ultimate goal of the acoustic optimization problem is to design a structure with
prescribed boundary conditions that will yield minimum sound radiation, the oscillatory behavior
in the radiation modes obtained by the finite element method is not acceptable.
3.3. Structural constraint

Motivated by the poor numerical behavior of the optimization problem with acoustic
constraint in the finite element solution, we propose a structural constraint. Consider the strain
energy of the beam given by

W P ¼
1

2
EI

Z
S

d2v

dx2

d2v�

dx2
dS: (9)

EI will be chosen to be unity so that the acoustic optimization problem is independent of
structural parameters. Whether we use the finite element method or the modal expansion
approach, W P can be expressed in a quadratic form,

W P ¼ 1
2
aTKa: (10)

The acoustic optimization problem now becomes minimizing W with respect to a subject to a
constraint 1

2
aTKa ¼constant. This leads to an eigenvalue problem,

Ba ¼ lKa: (11)

Since

l ¼

1
2
aTBa

1
2
aTKa

¼
W

W P

; (12)

we can define a structure-based radiation efficiency normalized by the structural strain energy as

sP ¼ l ¼
W

W P

: (13)

sP measures the percentage of the structural strain energy radiated into the air.
4. Numerical examples

Having introduced the structural constraint, we study several examples of the baffled beam with
different boundary conditions. With the structural constraint, results obtained by the finite
element method and the modal expansion approach are identical, and will not be further
compared.

Fig. 2 compares the radiation efficiency sP for different boundary conditions including
pinned–pinned, clamped–free and clamped–clamped. The first three radiation modes for the
clamped–free boundary condition are shown in Fig. 3. Fig. 4 shows those for the
clamped–clamped boundary condition. It is seen from the figures that the number of half-waves
in the velocity profiles increases as the radiation efficiency decreases.



ARTICLE IN PRESS

1 2 3 4 5

10
 -8

10
 -6

10
 -4

10
 -2

Eigenvector Number

R
ad

ia
tio

n 
E

ff
ic

ie
nc

ie
s

Fig. 2. Comparison of radiation efficiencies with different boundary conditions: -o-, pinned–pinned; -�-, clamped–free;

-+-, clamped–clamped.
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Fig. 3. The first three radiation modes for the clamped–free boundary condition obtained with the structural

constraint.

H. Denli et al. / Journal of Sound and Vibration 284 (2005) 1229–12381234
It should be pointed out that by using the radiation efficiency alone, it is not easy to classify the
radiation modes as weak or strong radiators. In order to do so, we compute the wavenumber
transform of the velocity profiles and present the results in Fig. 5 for the clamped–free boundary
condition and in Fig. 6 for the clamped–clamped boundary condition. From the wave-
number analysis, we conclude that the first two radiation modes for both boundary con-
ditions can be identified as strong radiators, and the remaining ones as weak radiators at the given
frequency.
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Fig. 4. The first three radiation modes for the clamped–clamped boundary condition obtained with the structural

constraint.
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5. Concluding remarks

We have studied the effect of constraints to the optimization of radiated acoustic power
calculated with the Rayleigh integral. An infinitely baffled finite beam vibrating at a single
frequency is used as an example to demonstrate the discussion. We have found that the acoustic
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optimization subject to an acoustic constraint specified by the radiated power of a piston can
cause numerical difficulties with the finite element solution when boundary conditions are
imposed to the velocity distribution of the beam. This numerical predicament has been verified
with the help of the finite element solutions with C1 and C2 elements as well as the modal
expansion approach with comparison functions. We then introduced the structural constraint to
the acoustic optimization problem. The eigenvalue of the eigenvalue problem resulting from the
optimization represents the ratio of the radiated acoustic power to the strain energy of the
structure. The acoustic optimization problem for the baffled beam with clamped–free and
clamped–clamped boundary conditions has been studied to demonstrate the theory. The
optimized velocity profiles with the structural constraint offer a feasible target for the structural
optimization study to create quiet structures.
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Appendix A. Mathematical details

Here, we list some mathematical details that are not presented in the main body of the paper.
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A.1. Element functions

This comparison function solution is valid for problems that admit closed-form expressions for
the natural vibration modes. Problems with complex geometries that do not allow closed-form
solutions can be solved with the powerful finite element method. This paper seeks a physically-
realizable surface velocity profile that will minimize the radiated acoustic power; as such, the
continuity of the velocity and its slope should be maintained. For this reason, C1- and C2-
continuous functions (third- and fifth-order Hermitian polynomials, respectively) are used to
approximate the velocity distribution in each element.

The beam is divided lengthwise into N elements with length le: The natural coordinates of an
element can be written as

z ¼
2ðx � xjÞ

le

� 1; (A.1)

where xj is the location of the first node of the jth element. The velocity in an element of the beam
is given by

v̂T
ðzÞ ¼ HTðzÞvi; (A.2)

where for C1 elements,

HðzÞ ¼

1
4
ð1 � zÞ2ð2þ zÞ

1
4
ð1 � zÞ2ðzþ 1Þ

1
4
ð1 þ zÞ2ð2� zÞ

1
4
ð1 þ zÞ2ðz� 1Þ

2
6666664

3
7777775
; ðA:3Þ

vTi ¼ vi
dv
dz

� �
i

viþ1
dv
dz

� �
iþ1

� �
¼ ½ vi yi viþ1 yiþ1 � ðA:4Þ

and for C2 elements,

HðzÞ ¼

1
2
� 15

16
zþ 5

8
z3 � 3

16
z5

5
16
� 7

16
z� 3

8
z2 þ 5

8
z3 þ 1

16
z4 � 3

16
z5

1
16
� 1

16
z� 1

8
z2 þ 1

8
z3 þ 1

16
z4 � 1

16
z5

1
2
þ 15

16
z� 5

8
z3 þ 3

16
z5

� 5
16
� 7

16
zþ 3

8
z2 þ 5

8
z3 � 1

16
z4 � 3

16
z5

1
16
þ 1

16
z� 1

8
z2 � 1

8
z3 þ 1

16
z4 þ 1

16
z5

2
66666666666664

3
77777777777775

; ðA:5Þ

vT
i ¼ vi

dv
dz

� �
i

d2v
dz2

� �
i

viþ1
dv
dz

� �
iþ1

d2v
dz2

� �
iþ1

� �
¼ ½ vi yi ki viþ1 yiþ1 kiþ1 �: ðA:6Þ
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A.2. Expressions of the matrices B and E

Recall that W ¼ 1
2
aTBa and 1

2
rf cShv̄2i ¼ 1

2
aTEa:

For the modal expansion approach, we have

B ¼
orf b2

2p

Z L

0

Z L

0

sin kRðx; rÞ

Rðx; rÞ
xðxÞxT

ðrÞdxdr; (A.7)

E ¼ rf cb

Z L

0

xðxÞxT
ðxÞdx: (A.8)

For the finite element method, we have

W ¼
1

2

XN

i¼1

XN

j¼1

vTi

Z 1

�1

Z 1

�1

orb2l2e
8p

sinðkRijðz; ZÞÞ
Rijðz; ZÞ

HTðzÞHðZÞdzdZ
� �

vj: (A.9)

Let

aij ¼

Z 1

�1

Z 1

�1

orb2l2e
8p

sinðkRijðz; ZÞÞ
Rijðz; ZÞ

HTðzÞHðZÞdzdZ:

We have

W ¼
1

2

XN

i¼1

XN

j¼1

vTj aijvi ¼
1

2
aTBa; (A.10)

where a is the global nodal vector consisting of the assembly of all vi and B is the assembly of all
aij: Likewise, we have E is the assembly of rf cb

R 1

�1H
TðzÞHðzÞdz over all elements.
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